Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 24(9): 2454-2467, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644805

RESUMEN

Safe, accurate, and reliable analysis of urinary biomarkers is clinically important for early detection and monitoring of the progression of chronic kidney disease (CKD), as it has become one of the world's most prevalent non-communicable diseases. However, current technologies for measuring urinary biomarkers are either time-consuming and limited to well-equipped hospitals or lack the necessary sensitivity for quantitative analysis and post a health risk to frontline practitioners. Here we report a robust paper-based dual functional biosensor, which is integrated with the clinical urine sampling vial, for the simultaneous and quantitative analysis of pH and glucose in urine. The pH sensor was fabricated by electrochemically depositing IrOx onto a paper substrate using optimised parameters, which enabled an ultrahigh sensitivity of 71.58 mV pH-1. Glucose oxidase (GOx) was used in combination with an electrochemically deposited Prussian blue layer for the detection of glucose, and its performance was enhanced by gold nanoparticles (AuNPs), chitosan, and graphite composites, achieving a sensitivity of 1.5 µA mM-1. This dual function biosensor was validated using clinical urine samples, where a correlation coefficient of 0.96 for pH and 0.98 for glucose detection was achieved with commercial methods as references. More importantly, the urine sampling vial was kept sealed throughout the sample-to-result process, which minimised the health risk to frontline practitioners and simplified the diagnostic procedures. This diagnostic platform, therefore, holds high promise as a rapid, accurate, safe, and user-friendly point-of-care (POC) technology for the analysis of urinary biomarkers in frontline clinical settings.


Asunto(s)
Técnicas Biosensibles , Papel , Sistemas de Atención de Punto , Humanos , Concentración de Iones de Hidrógeno , Oro/química , Glucosa/análisis , Urinálisis/instrumentación , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Técnicas Electroquímicas , Nanopartículas del Metal/química , Grafito/química , Biomarcadores/orina
2.
Micromachines (Basel) ; 14(7)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37512787

RESUMEN

Given the rapid progress and widespread adoption of advanced energy storage devices, there has been a growing interest in aqueous capacitors that offer non-flammable properties and high safety standards. Consequently, extensive research efforts have been dedicated to investigating zinc anodes and low-cost carbonaceous cathode materials. Despite these efforts, the development of high-performance zinc-ion capacitors (ZICs) still faces challenges, such as limited cycling stability and low energy densities. In this study, we present a novel approach to address these challenges. We introduce a three-dimensional (3D) conductive porous carbon framework cathode combined with zinc anode cells, which exhibit exceptional stability and durability in ZICs. Our experimental results reveal remarkable cycling performance, with a capacity retention of approximately 97.3% and a coulombic efficiency of nearly 100% even after 10,000 charge-discharge cycles. These findings represent significant progress in improving the performance of ZICs.

3.
Nanoscale ; 15(8): 4000-4005, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36723271

RESUMEN

The development of photo-enhanced lithium-ion batteries, where exposing the electrodes to light results in higher capacities, higher rate performance or self-charging, has recently gained substantial traction. The challenge in these devices lies in the realisation of photo-electrodes with good optical and electrochemical properties. Herein, we propose copper-hexahydroxybenzene as the active photo-electrode material which both harvests light and stores energy. This material was mixed with reduced graphene oxide as a conductive additive and charge transfer medium to create photo-active electrodes. Under illumination, these electrodes show improved charge storage kinetics resulting in the photo-accelerated charging and discharging performance (i.e. specific capacities improvement from 107 mA h g-1 to 126 mA h g-1 at 200 mA g-1 and 79 mA h g-1 to 97 mA h g-1 at 2000 mA g-1 under 1 sun illumination as compared to dark).

4.
J Mater Chem A Mater ; 9(40): 23199-23205, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34777830

RESUMEN

The development of batteries that can be recharged directly by light, without the need for external solar cells or external power supplies, has recently gained interest for powering off-grid devices. Vanadium dioxide (VO2) has been studied as a promising photocathode for zinc-ion batteries because it can both store energy and harvest light. However, the efficiency of the photocharging process depends on electrode structure and charge transport layers. In this work, we report photocathodes using zinc oxide as an electron transport and hole blocking layer on top of which we synthesise VO2. The improved interface and charge separation in these photocathodes offer an improvement in photo-conversion efficiency from ∼0.18 to ∼0.51% compared to previous work on mixed VO2 photocathodes. In addition, a good capacity retention of ∼73% was observed after 500 cycles. The proposed stacked photocathodes reduce the battery light charging time by 3-fold and are therefore an important step towards making this technology more viable.

5.
Nanoscale Adv ; 1(6): 2059-2085, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-36131964

RESUMEN

Currently, the development of ultraviolet (UV) photodetectors (PDs) has attracted the attention of the research community because of the vast range of applications of photodetectors in modern society. A variety of wide-band gap nanomaterials have been utilized for UV detection to achieve higher photosensitivity. Specifically, zinc oxide (ZnO) nanomaterials have attracted significant attention primarily due to their additional properties such as piezo-phototronic and pyro-phototronic effects, which allow the fabrication of high-performance and low power consumption-based UV PDs. This article primarily focuses on the recent development of ZnO nanostructure-based UV PDs ranging from nanomaterials to architectural device design. A brief overview of the photoresponse characteristics of UV PDs and potential ZnO nanostructures is presented. Moreover, the recent development in self-powered PDs and implementation of the piezo-phototronic effect, plasmonic effect and pyro-phototronic effect for performance enhancement is highlighted. Finally, the research perspectives and future research direction related to ZnO nanostructures for next-generation UV PDs are summarized.

6.
Nanoscale ; 10(7): 3451-3459, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29393951

RESUMEN

The pyro-phototronic effect can be used in pyroelectric semiconductor materials to significantly contribute in enhancing the self-powered photoresponse of photodetectors (PDs) via modulation of the photogenerated charge density. The pyro-phototronic effect in zinc oxide (ZnO) nanorods (NRs) was exploited thoroughly by doping with halogen elements, such as fluorine, chlorine (Cl), bromine and iodine. Cl-doped ZnO NRs (Cl : ZnO NRs) induces a large number of free charge carriers to enhance the self-powered photoresponse behavior (nearly 333% enhancement in response current) due to the pyro-phototronic effect as compared to pristine ZnO NRs. Moreover, 405% enhancement in pyrocurrent was measured for the Cl : ZnO NRs PD under a ultraviolet illumination intensity of 3 mW cm-2, as compared to 0.3 mW cm-2, in the absence of external bias voltage. Furthermore, other photoresponse parameters such as responsivity, external quantum efficiency and specific detectivity are measured to be higher due to the pyro-phototronic effect. Therefore, this study reveals the direct use of the pyro-phototronic effect to enhance the self-powered photoresponse.

7.
Nanoscale ; 9(27): 9411-9420, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28657080

RESUMEN

Herein, a novel heterostructure was fabricated by combining electrochemically and optically active materials to achieve a high capacitive response of 896 F g-1 at 5 A g-1. A network of ZnCo2O4 nanorods (NRs) was directly grown on a three-dimensional matrix of H : ZnO NRs (ZnCo2O4/H : ZnO NRs) that offered synergistic advantages by providing an optimum ion/charge transportation path, large electrochemically active surface area, and stable capacitive response during the electrolytic process. Furthermore, the fabricated solid-state asymmetric supercapacitor ZnCo2O4/H : ZnO NRs//activated carbon induced a large potential window of 1.5 V that offered excellent energy and power densities. In addition, optically active ZnCo2O4/H : ZnO NRs were also used for the conversion of optical energy over a broad wavelength range; thus, the as-fabricated asymmetric solid-state supercapacitor could easily provide the required power for the operation of a photodetector. Therefore, the unique heterostructure of ZnCo2O4/H : ZnO NRs not only presents excellent capacitive response but also demonstrates great potential for energy conversion.

8.
Nanotechnology ; 28(13): 135206, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28186002

RESUMEN

The nonlinear electrical characteristic of carbon nanodots (CNDs) has revealed important physical phenomena of charge trapping playing a dominant role in surface interactions. Functional groups on the surface of CNDs attract ambient water molecules which in turn act as charge traps and give rise to electrical hysteresis that plays a dominant role in understanding charge transport in CNDs on surface interactions. Hysteresis in the current-voltage response is further utilized to study the interaction of the CNDs with nitrogen dioxide gas as an external stimuli. The hysteresis area is observed to be dependent on the time of gas interaction with the CNDs, therefore revealing the interaction mechanism of the CNDs with the gas.

9.
ACS Appl Mater Interfaces ; 8(28): 18182-8, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27352008

RESUMEN

Light absorption efficiency and doping induced charge carrier density play a vital role in self-powered optoelectronic devices. Unique vanadium-doped zinc oxide nanoflake array (VZnO NFs) is fabricated for self-powered ultraviolet (UV) photodetection. The light harvesting efficiency drastically improved from 84% in ZnO NRs to 98% in VZnO NFs. Moreover, the hydrogenation of as-synthesized VZnO (H:VZnO) NFs displayed an outstanding increase in response current as compared to pristine structures. The H:VZnO NFs device presents an extraordinary photoelastic behavior with faster photodetection speed in the order of ms under a low UV illumination signal. Excellent responsivity and external quantum efficiency with larger value of specific detectivity of H:VZnO NFs device promises an outstanding sensitivity for UV signal and self-powered high-performance visible-blind photodetector.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...